Package: mlsurvlrnrs 0.0.5

mlsurvlrnrs: R6-Based ML Survival Learners for 'mlexperiments'

Enhances 'mlexperiments' <https://CRAN.R-project.org/package=mlexperiments> with additional machine learning ('ML') learners for survival analysis. The package provides R6-based survival learners for the following algorithms: 'glmnet' <https://CRAN.R-project.org/package=glmnet>, 'ranger' <https://CRAN.R-project.org/package=ranger>, 'xgboost' <https://CRAN.R-project.org/package=xgboost>, and 'rpart' <https://CRAN.R-project.org/package=rpart>. These can be used directly with the 'mlexperiments' R package.

Authors:Lorenz A. Kapsner [cre, aut, cph]

mlsurvlrnrs_0.0.5.tar.gz
mlsurvlrnrs_0.0.5.zip(r-4.5)mlsurvlrnrs_0.0.5.zip(r-4.4)mlsurvlrnrs_0.0.5.zip(r-4.3)
mlsurvlrnrs_0.0.5.tgz(r-4.5-any)mlsurvlrnrs_0.0.5.tgz(r-4.4-any)mlsurvlrnrs_0.0.5.tgz(r-4.3-any)
mlsurvlrnrs_0.0.5.tar.gz(r-4.5-noble)mlsurvlrnrs_0.0.5.tar.gz(r-4.4-noble)
mlsurvlrnrs_0.0.5.tgz(r-4.4-emscripten)mlsurvlrnrs_0.0.5.tgz(r-4.3-emscripten)
mlsurvlrnrs.pdf |mlsurvlrnrs.html
mlsurvlrnrs/json (API)

# Install 'mlsurvlrnrs' in R:
install.packages('mlsurvlrnrs', repos = c('https://kapsner.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/kapsner/mlsurvlrnrs/issues

On CRAN:

Conda:

algorithmscox-regressionexperimentsglmnetlearnersmachine-learningrandom-survival-forestssurvivalsurvival-support-vector-machinexgboost

5.86 score 4 stars 12 scripts 278 downloads 7 exports 77 dependencies

Last updated 6 days agofrom:79e8efc600. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-winOKMar 05 2025
R-4.5-macOKMar 05 2025
R-4.5-linuxOKMar 05 2025
R-4.4-winOKMar 05 2025
R-4.4-macOKMar 05 2025
R-4.4-linuxOKMar 05 2025
R-4.3-winOKMar 05 2025
R-4.3-macOKMar 05 2025

Exports:c_indexLearnerSurvCoxPHCoxLearnerSurvGlmnetCoxLearnerSurvRangerCoxLearnerSurvRpartCoxLearnerSurvXgboostAftLearnerSurvXgboostCox

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercodetoolscolorspacecrayondata.tabledigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsggplot2gluegridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonlitekdryknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemlexperimentsmllrnrsmunsellnlmennetpillarpkgconfigprettyunitsprogressR6rappdirsRColorBrewerrlangrmarkdownrpartrstudioapisassscalessplitToolsstringistringrtibbletinytexutf8vctrsviridisviridisLitewithrxfunyaml

glmnet: Survival Analysis

Rendered frommlsurvlrnrs_glmnet_survival.qmdusingquarto::htmlon Mar 05 2025.

Last update: 2024-05-29
Started: 2024-05-29

ranger: Survival Analysis

Rendered frommlsurvlrnrs_ranger_survival.qmdusingquarto::htmlon Mar 05 2025.

Last update: 2024-05-29
Started: 2024-05-29

rpart: Survival Analysis

Rendered frommlsurvlrnrs_rpart_survival.qmdusingquarto::htmlon Mar 05 2025.

Last update: 2024-05-29
Started: 2024-05-29

xgboost: Survival Analysis, AFT Analysis

Rendered frommlsurvlrnrs_xgboost_survival_aft.qmdusingquarto::htmlon Mar 05 2025.

Last update: 2024-05-29
Started: 2024-05-29

xgboost: Survival Analysis, Cox Regression

Rendered frommlsurvlrnrs_xgboost_survival_cox.qmdusingquarto::htmlon Mar 05 2025.

Last update: 2024-05-29
Started: 2024-05-29